EACH KIT INCLUDES

Pro-Line standard 12 mm hex wheels \& tires (except Factory Team kits). Aluminum motor mount with a built-in heatsink.
Carbide ball Stealth differentials.
Adjustable caster, camber, toe-in, anti-squat, kickup. Several tie-rod mounting positions. Foam bumper. TC3 decal sheet. Rear bumper.

RTR TC3

Shocks: VCS Macro shock.
Tires and Wheels: Pro-Line VRage tires and Axis wheels.

Front \& Rear Axles: Composite MIP CVD's.

Turnbuckles: Associated steel turnbuckles

Pre-painted Protoform Stratus, with choice of two color schemes.

Also includes: Precision stainless-steel rubber-sealed ball bearings.

RACER KIT

Shocks: VCS Macro shock.
Tires and Wheels: Pro-Line VRage tires and Axis wheels.

Front \& Rear Axles: Composite MIP CVD's.

Turnbuckles: Associated steel turnbuckles

Choice of six unpainted Protoform bodies, with decals.

Also includes: Precision stainless-steel rubber-sealed ball bearings.

TEAM KIT

Shocks: Blue anodized aluminum-body VCS Macro shocks.

Tires and Wheels: Pro-Line VRage tires and Axis wheels.

Front \& Rear Axles: Blueanodized alloy MIP CVD's.

Turnbuckles: Factory Blue titanium turnbuckles.

Also includes: Precision stainless steel PTFE/rubbersealed ball bearings.

FACTORY TEAM KIT

Shocks: Blue anodized aluminum threaded shock bodies, VCS Macro shocks.

Front \& Rear Axles: Blue-anodized alloy MIP CVD's.

Turnbuckles: Factory Blue titanium turnbuckles.

Also includes: Precision Teflon-sealed ball bearings. Droop gauge. Anti-roll bar. Factory Team blue aluminum \& graphite parts including: Counterfeit transponder mount. Radial clip-on heatsink. Graphite chassis. Unobtainium shock shafts. Blue aluminum screws.

The RTR TC3 uses the RACER KIT portions of this manual.

TOOLS

KIT TOOLS SUPPLIED
(1) Allen wrenches \#6950 (.050", 1/16", 3/32", 5/64")
(2) molded tools \#6956
(3) droop gauge \#3987

EXTRA STUFF NEEDED

(1) Phillips screwdriver \#2
(2) needlenose pliers
(3) soldering iron (40-50 watts) and a small amount of Rosin core solder. Pencil-type soldering iron is better than the gun type. DANGER! Tip is HOT!
(4) Thread locking compound (\#1596 Locking Adhesive or equivalent)
(5) Super glue (cyanoacrylic glue, \#1597 Tire Adhesive).
(6) hobby knife WARNING! This knife cuts plastic and fingers with equal ease, so be careful.
(7) precision ruler
(8) electrician's tape
(9) strapping tape

-

WARNING! Always use hand and eye protection with cyanoacrylic glue!
©

(5) SUPER GLLEE

HELPFUL TOOLS (NOT REQUIRED)

(1) Allen drivers (straight Allen wrenches with hex shaped handles) such as the following made by Associated:
$\begin{array}{ll}\text { \#6957 } & .050 \text { " driver } \\ \# 6958 & 1 / 16 " \text { driver }\end{array}$
\#6959 5/64" driver
\#6960 3/32" driver
\#6961 2.5mm driver
(2) Vernier calipers
(3) Hobby scissors
(4) Nut drivers (screwdriverhandled hex socket tools) $3 / 16$ " nut driver 1/4" nut driver 11/32" nut driver
(1)

(2)

1 R/C two channel surface frequency radio system		need	need	need
2 Battery pack* (6 cell)	need	need	need	need
3 Battery charger* (we recommend a peak detection charger)	need	need	need	need
4 Electronic speed control*		need	need	need
5 R/C electric motor*		need	need	need
6 Pinion gear*, size to be determined by type and wind of motor you will be using		need	need	need
$\mathbf{7}$ 1:10 scale 190mm touring car body*			need	need
$\mathbf{8}$ 24mm touring car tires and wheels*				need
*Available from Team Associated. See your catalogs.				

Do not use a power screwdriver to install screws into nylon, plastic, or composite materials. The fast rotation speed can heat up the screws being installed. They can then break the molded parts or strip the threads during installation.

EKHRAITHIS NIEDDID
http://www.rc10.com/kits

© 2000-2004 Associated Electrics, Inc.

ASSOCIATED ELECTRICS, INC.
3585 Cadillac Ave.
Costa Mesa, CA 92626-1401
USA
http://www.rc10.com http://www.teamassociated.com

BEFORE BUIIDING

OPEN THE BAGS IN ORDER

The assembly is arranged so that you will open and finish that bag before you go on to the next bag. Sometimes you will have parts remaining at the end of a bag. These will become part of the next bag. Some bags may have a large amount of small parts. To make it easier to find the parts, we recommend using a partitioned paper plate for spreading out the parts so they will be easier to find.

MANUAL FORMAT

The following explains the format of these instructions.
The beginning of each section indicates:
1 Which bag to open ("BAG A") and which steps you'll be using those parts for ("FOR STEPS 1-3").
2 Which parts you will use for those steps. Remove only the parts shown. "1:1" indicates an actual size drawing; place your part on top and compare it so it does not get confused with a similar part.
3 Which tools you should have handy for that section.

4 In some drawings, the word "REAR" with an arrow indicates which direction is the rear of the car to help keep you oriented.
5 The instructions in each step are ordered in the order you complete them, so read the words AND follow the pictures. The numbers in circles are also in the drawing to help you locate them faster.
6 When we refer to left and right sides of the car, we are referring to the driver's point of view inside the car.
7 Occasionally you will see an upside-down triangle next to a part. V This indicates that more information is given about the part next to the matching triangle near the text.

SUPPLEMENTAL SHEETS

We are constantly developing new parts to improve our kits. These changes, if any, will be noted in supplementary sheets located in a parts bag or inside the kit box. Check the kit box before you start and each bag as it is opened. When a supplement is found, attach it to the appropriate section of the manual.

ASTERISK["] DENOLES FAGTOMY TEMW PART NUWBER

step 1

STEERING RACK ASSEMBLY

(1) steering rack and one \#3858 short ball end to the \#3855 steering rack arm.
(2) Slide the \#6587 spring and the \#3855 rack shim onto the \#6918 screw. Slide the screw assembly through the bottom of the steering rack.
Attach the \#3855 rack arm to the rack with a \#4449 locknut.
4
Tighten down the spring until the screw is flush with the top of the nut. the rear when assembled on the rack: The ball end on the rack arm and the ball ends on the rack should be pointing in opposite directions.

3855, qty 2 spacer, black

BICB

REMOVE THESE
PARTS FOR:
Steps 1-2

3865, qty 4 set screw

step 1

3863, qty 1, code (F+2) ront arm rear moun

3884, 3885*, qty 2 front arm
front arm front mount

3863, qty 1 rear arm rear mount

3863 , qty 1 , code (R) rear arm front mount rea

6292, 6934*, qty 9 4-40 X 3/8 screw

REMOVE GRAY AREAS WHERE SHOWN

 BE CAREFUL NOT TO REMOVE THE BALLS!! Remove flashing so balls are perfectly smooth.
REAR ARM ASSEMBLY

(1) Install a \#3865 10-32 set screw into the \#3893 (3894*) rear arms, right and left until the set screws are flush with the top of the arms. We will adjust them in step 3 .
(2) Attach the \#3863 rear arm front mount (with the "R" molded into mount--see below for location) to the chassis with two \#6292 (6934*) screws.
(3) Slide the \#3866 inner hinge pins through the \#3893 (3894*) rear arms. Slide the pins with the arms into the \#3863 rear arm front mount.
(4) Place the \#3863 rear arm rear mount (with the " $\mathrm{R}+3+2$ " molded into the mount) on the \#3900 rear bumper. Align the rear arm mount and bumper with the two hinge pins and slide together. Tighten it down with two \#6292 (6934*) screws.

By changing arm mounts you can adjust toe-in and anti-squat. For more information about the rear toe-in and anti-squat settings, see the tuning section at the rear of the manual.

step 3

SETTING DROOP

(1) Place the supplied \#3987 droop gauge on a flat surface on its edge as shown. Rest the bottom of the chassis on the gauge as shown, making sure the screws are not resting on the gauge.
(2) Slide the gauge out so the front arm rests on step 6.
(3) With your 3/32" Allen wrench, adjust the set screw so the outer part of the arm just touches the step. Adjust both front arms.
(4) Slide the gauge to the rear arms and repeat, but the rear arms will rest on step 4.

NOTE: $1 / 8$ turn equals $1 / 2$ step in change.
1/4 turn equals 1 step change.

FRONT ARM SETTING

REAR ARM SETTING

RACER'S TIP: By using a ball end $3 / 32^{\prime \prime}$ driver it is easier to adjust the droop set screws.

BMA

REMOVE THESE

PARTS FOR:

Steps 1-5

6573, qty 4 diff thrust washer

3907, qty 2
$3 / 16 \times 5 / 16$ bushing unflanged

6575, qty 2 diff bolt

6581, qty 24 6574, qty 12 $3 / 32$ diff ball $5 / 64$ thrust ball large

3906, qty 2 D-drive ring

TOOLS USED

3904, qty 2 2-56 locknut

3908, qty 2 long outdrive

step 1

THRUST BALL ASSEMBLY

Hold the \#6575 diff bolt with your 5/64" Allen wrench and slide one \#6573 washer onto the \#6575 diff bolt.
(2) Apply a generous amount of \#6588 black grease to the washer on the side facing away from the bolt head.
Place six \#6574 thrust balls into the grease against the \#6575 bolt and washer. Add the other \#6573 washer. The grease will hold the balls in place during assembly, sandwiched between the washers.

6588

stip 2

SPRING

(1) With a pair of pliers, compress the \#6582 diff spring a few times. Slide the spring onto the bolt against the thrust assembly.

(grease not shown)

3907, qty 2 3/16 x 5/16 bushing, unflanged

FACTORY TEAM ONLY 6903*, qty 4 $3 / 8 \times 5 / 8$ bearing Teflon sealed, unflanged

step 6

SHORT HUB ASSEMBLY

(1) Add a light coat of \#6591 Stealth lube to the \#3908 short hub face. Place a \#3906 diff ring on the hub, lining up the flats on the ring and hub.
(3) Insert one \#3907 bushing onto the short hub.
(4) Push the \#3908 short hub assembly into the back side of the differential ring gear assembly.

step 1

DIFF ASSEMBLY

(1) Insert the long hub assembly into the short hub assembly, making sure you line up the bolt in the hub and the bolt threads into the \#3904 locknut.

CHECK ALIGNMENT OF THE HUBS

Tighten the diff with your 5/64" Allen wrench, but not completely. the diff bolt a few turns then stop to rotate the diff hubs in opposite directions. Then screw in the bolt some more. Follow this procedure to check proper alignment of the parts. The following note clarfies this.

READ THE FOLLOWING CAREFULLY.

As you tighten the diff bolt, pay close attention to the feeling when the spring is fully compressed. Do not overtighten the bolt. When you feel the spring fully compressed, loosen the diff bolt $1 / 2$ turn. No more, no less. After you have driven the car for one pack, recheck the diff adjustment as above so that when you feel the spring fully compressed, loosen the diff bolt 1/2 turn. Never adjust the diff any other way.
Now assemble the second diff the same way.

Rotate the hubs in opposite directions several times in between screwing in the diff bolt.

IT IS EXTREMELY IMPORTANT TO USE THE EXACT AMOUNT OF SHIMS SUGGESTED IN THESE STEPS.

step 8

FINAL OUTDRIVE ASSEMBLY

(1) Insert the \#3908 diff bolt cover into the long hub.
(2) Press one \#3911 outdrive shim on the long hub.
(3) Place one \#3976 bearing over each outdrive hubs.

BMA

REMOVE THESE PARTS FOR:
Steps 9-12

3917, qty 1 spur gear adapter

3919, qty 1 C-clip

3911, qty 6 3919, qty 2 3919, qty 1 input shaft small E-clip large E-clip shim

3914, qty 2 drive pinion

3917, qty 2 drive cup

6920, qty 2
3919, qty 5
$4-40 \times 3 / 16$ screw dowel pin

RACER KIT ONLY 3977, qty 4 3/16 x 3/8 bearing, rubber sealed

TEAM \& F.T. KITS ONLY 6906, qty 4 3/16 x 3/8 bearing, Teflon sealed

6288, qty 2 5407, qty 1 $4-40 \times 1 / 4$ red O-ring screw

input shaft spacer, alum.

3922, qty 1 72T Kimbrough spur gear

3915, qty 1
rear input shaft


```
1/16"
```


steps

 Trim any burrs from this edge of the drive pinion with a hobby knife.
rear

FRONT INPUT SHAFT ASSEMBLY
(1) Install and center the \#3919 dowel pin into the \#3915 front input shaft.

(5) S Slide the second \#3977 or \#6906 bearing onto the input shaft, then one \#3911 input shaft shim.
(6) Install and center the \#3919 dowel pin into the input shaft.
7 Slide a \#3917 drive cup onto the end of the input shaft.
8 Tighten it down with one \#6920 screw.
(2) Trim burrs from the drive pinion edge where shown above. Slide the \#3914 drive pinion onto the input shaft. Make sure the dowel pin aligns perfectly with the slot in the pinion.
(3) Add the \#3919 small E-clip.
(4) Slide two \#3911 input shaft shims and one \#3977 or \#6906 bearing onto the \#3915 input shaft.

step 10

REAR INPUT SHAFT ASSEMBLY

(1) Attach the \#3919 C-clip to the \#3915 rear input shaft. (We've included an extra C-clip in case you lose one.)
(2) Install the \#3919 dowel pin into the input shaft.
(3) Slide on the \#3917 gear adapter.
(4) Add the \#3919 large E-clip.

REAR INPUT SHAFT ASSEMBLY

(1) Slide one \#3977 or \#6906 bearing onto the \#3915 rear input shaft, then one \#3911 input shaft shim, then one \#3911 input shaft spacer .
(2) Install and center one \#3919 dowel pin into the input shaft.
(3) Slide a \#3917 drive cup onto the input shaft.

4 Tighten it down with one \#6920 screw.
(5) Slide in a \#5407 O-ring into the \#3917 drive cup.

6 Slide one \#3977 or \#6906 bearing and two \#3911 input shaft shims onto the \#3915 rear input shaft.
7 Install and center a \#3919 dowel pin into the input shaft.
(8) Slide a \#3914 drive pinion onto the end of the input shaft. Make sure the dowel pin aligns perfectly with the slot in the pinion.
(9) Add a \#3919 small E-clip.

RACER KIT ONLY 3977, qty 2 $3 / 16 \times 3 / 8$ bearing, rubber sealed

TEAM \& F.T. KITS ONLY 6906, qty 2 $3 / 16 \times 3 / 8$ bearing, Teflon sealed

$\operatorname{stg} 12$

REAR INPUT SHAFT ASSEMBLY
(1) Slide the \#3922 spur gear over the drive cup and align it on the \#3917 gear adapter.
(2) Tighten down the spur gear with two \#6288 screws.

BAGO

REMOVE THESE PARTS FOR:
Steps 13-15

TOOLS US:D

1/16, 3/32

3910, qty 2 lower transmission case

6292, 6934*, qty 8 4-40 x 3/8 screw

3910, qty 1 upper transmission case

6924, 6860*, qty 6 $4-40 \times 3 / 8$ screw

6591, qty 1 Stealth diff lube

step 13

FRONT TRANSMISSION ASSEMBLY, LOWER HALF
(1) Attach the \#3910 lower transmission case to the chassis with four \#6292 screws.

step 14

FRONT

 TRANSMISSION ASSEMBLY(1) Install the diff assembly and front input shaft assembly into the lower transmission case. (2) Add a small amount of \#6591 diff lube to the front side of the ring rear and pinion gear. (3) Attach the \#3910 upper transmission case to the lower case with six \#6924 (6860*) screws.
 transmission case to the chassis with four \#6292 (6934*) screws.

BIA
 REMOVE THESE PARTS FOR: Steps 16-18

step 16

REAR TRANSMISSION ASSEMBLY
(1) Install the diff assembly into the lower transmission case.
(2) Place one end of the \#3924 drive shaft into the drive cup on the rear input shaft assembly.
(3) Install the opposite end of the drive shaft into the front drive cup. Set the rear input shaft into place.
(4) Add a small amount of \#6591 diff lube to the front side of the ring gear and pinion

step 17

REAR TRANSMISSION CASE

(1) Attach the \#3910 upper transmission case to the lower case with six \#6924 (6860*) screws.

step 18

DRIVE BEARING CAP
(1) Align the \#3917 drive bearing cap over the bearing and attach with two \#6924 (6860*) screws where shown.

step 1

step 2

FRONT SHOCK TOWER ASSEMBLY
(1) Install the two \#7413 screws through the outer holes on the \#3881 (3882*) front shock tower. Then thread on the \#7260 nuts.
(2) Attach the \#3858 ball ends and \#7260 nuts through the lower inner holes on the shock tower.
(3) Add a \#6272 dust cover to the ball ends.

FRONT SHOCK TOWER ASSEMBLY
(1) Attach the \#3881 (3882*) front shock tower to the upper transmission case with three \#6924 (6860*) screws.

$\operatorname{step} 3$

REAR SHOCK TOWER ASSEMBLY
(1) Install the two \#7413 screws through the outer holes on the \#3895 (3896*) rear shock tower. Then thread on the \#7260 nuts
(2) Attach the \#3858 ball ends and \#7260 nuts through the lower inner holes on the shock tower.
(3) Add a \#6272 dust cover to the ball ends.
step 4

REAR SHOCK (1) TOWER ASSEMBLY
Attach the \#3895 (3896*) rear shock tower to the upper transmission case with three \#6924 (6860*) screws.

1)	1:1		1:1	1:1	1:1	1:1	1:1	ITST8E1
REMOVE THESE PARTS FOR: Steps 1-4	-	-	\square			\square		
	7381, qty 4 CVD coupling	7381, qty 4 CVD cross pin	7381, qty 4 CVD set screw	$\begin{aligned} & 7260, \text { qty } 2 \\ & 4-40 \text { plain nut } \end{aligned}$	6272, qty 2 ball end dust cover	7369, qty 2 CVD roll pin	7368, qty 2 shim	\| 1/16", .050"
			1:1	1:1		1:1	1:1	
	RACER KIT ONL 3977, qty 4 $3 / 16 \times 3 / 8$	TEAM \& F.T 6906, qty 4 $3 / 16 \times 3 / 8$	KITS ONLY	6273, qty 2 long ball end natural color	$3858, \text { qty } 2$ long special ball end, black	3965, qty 2 bearing spacer	$\begin{aligned} & 3875, \text { qty } 2 \\ & 4-40 \times 11 / 32 \text { screw } \\ & \text { with shoulder } \end{aligned}$	
	rubber sealed be	ing Teflon seale	earing		BLACK GREASE			1:1
3868, 3869*, qty 2 front block carrier (0° caster block)	3876, 3877^{*}, qty 2 front steering block	3887 or 3888 , qty 4 CVD bone	3886, qty CVD axle	14	6588, qty 1 black grease	3866, qty 2 front outer hinge pin	3862, qty 2 5-40 set screw gold	3874, qty 4 block carrier bushings

step 1

MIP CVD ASSEMBLY

(1) \#6588 black grease inside the axle hole where shown, then on the coupling and insert the coupling into the axle.
(2) Slide the axle into the dogbone, aligning the cross holes.
(3) Insert the cross pin, making sure it is evenly spaced on both sides of the bone.
(4) Add the MIP thread lock to the set screw. Angle and turn the CVD so the set screw can be screwed in with the Allen wrench
5 Repeat steps for the three remaining CVD's.

\square STEERING BLOCK ASSEMBLY
6 Install one \#3977 or \#6906 bearing on the axle. Slide the axle assembly into the back of the \#3876 (3877*) steering block.
7 Slide in a \#3965 bearing spacer.
(Install the second \#3977 or \#6906 bearing into the steering block and on the axle, followed by one \#7368 thin spacer.
(9) Insert the \#7369 roll pin into the axle.
(10) Thread the natural color \#6273 ball end into the bottom of the \#3876 steering block and add the \#7260 plain nut. Add a \#6272 dust cover over ball the end.
11 Repeat steps for the right side, installing the steering block ball end in the opposite way:

67

step 3

LEFT BLOCK CARRIER ASSEMBLY

(1) Break through and push out the thin webbing in the holes with your 2 mm Allen wrench before assembly.
(2) Insert two \#3874 steering block bushings and steering block assembly into the \#3868 (3869*) block carrier as shown. Make sure the CVD dogbone goes through the hole of the block carrier as shown.
Align the steering block and block carrier and thread a \#3858 long special ball end on top, and a \#3875 screw on the bottom. Add a \#6272 dust cover over the ball end. Insert the 3862 5-40 set screw into the bottom of the block carrier.
6 Do not thread it all the way in. We will tighten it in the next step. Repeat steps for the right side.

BMAE

REMOVE THESE

 PARTS FOR:Steps 5-6

3876, 3977*, qty 2 rear hub carrier

RACER KIT ONLY 3977, qty 4 $3 / 16 \times 3 / 8$ rubber

F.T. \& TEAM KITS 6906, qty 4 $3 / 16 \times 3 / 8$ Teflon sealed bearing

6272, qty 2
7260, qty 2 bal

step 4

ATTACH BLOCK CARRIER ASSEMBLY

(1) Place the left block carrier assembly between the arm holes. Insert the \#3866 front outer hinge pin through the arm holes.
(2) Tighten the set screw of step 3, \#5, locking the hinge pin in place. DO NOT OVERTIGHTEN!
(3) Insert the univeral dogbone into the slots of the outdrive hub.
4 Now install the block carrier for the other side.

3862, qty 2
$5-40$ set screw, gold washers, plastic

7369, qty 2
CVD roll pin

$\operatorname{sten} 6$

ATTACH REAR HUB CARRIER ASSEMBLY

(1) Place the left hub carrier between the arm holes as shown and add two \#4187 spacers where shown. Insert the \#3866 rear outer hinge pin through the arm and hub carrier. Thread in the \#3862 5-40 set screw into the
(2) hub carrier. Tighten down the set screw, locking the hinge pin in place. DO NOT OVERTIGHTEN!
(3) Insert the universal dogbone into the slots of the outdrive hub.
4 Now install the hub carrier assembly for the right side.

step 1

TURNBUCKLE ASSEMBLY

1 Twist the \#6274 ball cups onto the \#1356 blue titanium turnbuckle or \#3867 steel turnbuckle until you get the dimension shown for each part. Assemble all six turnbuckles.
2 Snap all six turnbuckles into place where shown, making sure that all the universal bones are in the slots of the outdrive hubs.
REAR

1 Mount the \#3879 (3880*) left front and left rear chassis braces with two \#6924 (6860*) screws and one \#6923 screw for each brace as shown.
2 Repeat step for the right side.

Each chassis brace has a molded identification that indicates where it goes on the car, as shown below.

6469, qty 4 large O-ring

TEAM KIT ONLY 8450B, qty 4 macro shock body blue

7217, qty 4 shock eyelet

6465, qty 4 shock piston \#2

5423, qty 1 40 wt silicone oil

7217, qty 4 shock pivot ball
R
8458, qty
macro shock composite body

5407, qty 8 red O-ring

6299, qty 8 E-clip

8456, qty 4 VC foam

3963*, qty 4
threaded macro shock body blue

step 1

TRIM SHOCK PISTON
(1) Burrs on the \#6465 shock piston interfere with smooth shock action within the shock body. To remove from tree without creating burrs, twist up, not down. Remove four \#2 shock pistons.
(2) Remove remaining burrs carefully with a hobby knife.

step 2

VC FOAM AND BOBBIN
(1) Soak the \#8456 VC foam with \#5423 40wt shock oil and install it onto the \#8456 VC bobbin.

INTERNAL SHOCK ASSEMBLY

(Assemble all four shocks at once.) Install the \#6469 O-ring over the threads of the shock body.

RACER KIT ONLY: 8458 TEAM KIT ONLY: 8450B FACTORY TEAM KIT: 3963*
(2) On the \#8844 (3964*) shock shaft, install a \#6299 E-clip on both sides of a \#6465 (\#2) piston from step \#1.

(3) Slide the VC foam/ bobbin assembly over the \#8844 (3964*) shaft and then two \#5407 O-rings. Place a couple drops of oil on the O-rings.

(4) Insert the assembly into the shock body and pull the shaft through firmly to seat the VC bobbin at the base of the shock bore.
5 Push the \#7217 pivot ball and eyelet together. As you hold the shaft with a rag and needlenose pliers next to threads, screw the eyelets onto the end of the shock shaft.

TIP: Use a permanent marker to mark your shocks with an F and R to designate front and rear.

step 4

(1) Holding the shock upright, fill with oil to the top of the body.

(2) Slowly move the shaft up and down several times to allow air bubbles to escape to the top.

(3) Refill with oil to the top of the body.

(4) Push the shaft up until the piston is level with the top of the body. The oil will bulge up above the shock body.

(5) Fill The \#6428 shock cap about halfway with oil and install onto the body. Try to retain as much oil as possible during assembly. The shaft will extend out as you tighten the cap down.

SETTING THE REBOUND

shock shaft in and out a few times an then push it all the way in. It should be easy to push the shaft in until the eyelet hits the body

7 Then the shaft should push itself out to its full length very slowly.

8 If the shock does not push out this far there is not enough oil in it Add just a little oil and try steps 6-7 again.

9 If the shock rebounds too fast, or you cannot push the shaft in until the eyelet hits the body, there is too much oil. Loosen the cap about a full turn and pump out a small amount of oil by pushing the shaft in. Retighten the cap and try steps 6-7 again.

Too much oil in the shock will result in leakage.

BIGA

REMOVE THESE

 PARTS FOR: Steps 5-8

6925, qty 4 $4-40 \times 1 / 2$ screw

6475, qty $4 \quad 3963^{*}$, qty 4
$\begin{array}{ll}\text { spring collar } & \text { spring cup }\end{array}$

8846, spring preload spacer qty 4 ea. 1/8" qty 2 ea. $1 / 16{ }^{\prime \prime}$

3944, qty 2 qty 2 spring, gold, front spring, silver, rear

6472, qty 4 shock nut, small

FACTORY TEAM ONLY

FACTORY TEAM ONLY, STEP 5
(1) Slide one black O-ring into the groove in the threaded shock collar.
(2) Use one drop of oil on the O-ring before you collar.

3 Thread on the shock collar. Make sure that the shoulder is facing down when threaded on the body.
shoulder faces down

step 8

REAR SHOCK MOUNTING

(1) Add the \#6473 shock bushing to the rear shock tower.
(2) Push the shock cap over the bushing and add the \#6472 nut. Do not overtighten or the shock will bind.
(3) Fasten the lower shock into the arm's fasten the lower shock into the arm
4 Do the other rear shock.
(4) Compress the spring to add the \#6475 spring cup.

step 1

FRONT SHOCK MOUNTING

(1) Add the \#6473 shock bushing to the shock tower.
(2) Push the shock cap over the bushing and add the \#6472 nut. Do not overtighten or the shock will bind.
(3) Fasten the lower shock into the arm's inside hole with the \#6925 screw.
4 Do the other front shock.

step 6

FINAL SHOCK ASSEMBLY
(1) Slide the $1 / 8$ " \#8846 preload spacer onto the body of the two front shocks.
(2) Slide the $1 / 8^{\prime \prime}$ and $1 / 16$ " preload spacers onto the rear shocks.
(3) Slide on the \#6475 spring collar, then \#3944 gold spring on the front shocks, and \#3942 silver spring on the rear shocks

REMOVE THESE PARTS FOR:
Steps 1-6

3858, qty 1 short special ball end, black

7337, qty 4 steel washer

7673, 6934*, qty 2 $4-40 \times 5 / 16$ screw

6272, qty 4 ball end dust cover foam spacer

RACER \& TEAM
6917, qty 4 $4-40 \times 3 / 8$ screw

6928, qty 1 4-40 x 1 screw

3931, 3933*, qty 1 motor clamp (with heatsink)

9180, qty 4 servo horn

6916, qty 2 $4-40 \times 1 / 2$ screw with hole
\square
6727, qty 1
3853, 3974*, qty 1 battery brace

F.T. \& TEAM KIT ONLY 1356, qty 1
blue titanium turnbuckle

RACER KIT ONLY 3867, qty 1 steel turnbuckle

3929, qty 1 $4-40 \times 1.25$ screw

6338, qty 1 antenna tube and cap

6332, qty 3 battery clip

3902, qty 1 transponder mount

F.T. KIT ONLY
F.T. KIT ONLY 3968*, qty 1 counterfeit transponder

3927*, qty 1 clip-on radial heatsink

step 1

ADD MOUNTS TO THE SERVO

servo horn for your servo from the chart at right. Install the \#3858 ball end into the servo horn. Add the \#6272 dust cover. Remove the servo horn from your servo and replace it with the \#9180 horn that you selected, then fasten with the stock mounting screw that came with your servo in the position shown below. DO NOT POINT IT STRAIGHT UP! See drawing for correct dimension.
(2) Find the appropriate \#7336 offset spacer for your servo from the chart at right. Attach the spacer, if any, in between the \#7336 mount and the servo with the \#7337 washers and \#6917 (6860*) screws.

stop 2

MOUNT THE SERVO

(1) Mount the servo to the chassis with two \#7673 (6934*) screws.
(2) Twist \#6274 ball cups onto \#1356 blue turnbuckle or \#3867 steel turnbuckle until you get the dimension shown.
(3) Use needle-nose pliers to attach the link to the ball ends.

Airtronics 94102	no spacer	A d
Airtronics 94155, 94156, 94157, 94158, 94257, 94258, 94737, 94738, 94741, 94452	thick spacer	A fid
```Futaba V S3003, S9404, S9402, S9303, S3401, S9101, S9202```	no spacer	$d$
Hitec   S-300, HS-303, HS-525BB, HS-545BB, HS-422, HS-425, HS-605BB, HS-615MG, HS-925MG, HS-945MG	no spacer	H
JR Z8450, Z8550, NES-4721, NES-4735, Z4750		
$\begin{aligned} & \text { JR } \\ & \text { Z250, Z550, Z2750 } \end{aligned}$	thin spacer	,
$\begin{aligned} & \hline \text { KO V } \\ & \text { PS-1012 FET, PS-2000 FET, } \\ & \text { PS-2001 FET, PS-2004 FET, } \\ & \text { PS-2015 FET } \end{aligned}$	no spacer	

VOn Futaba servo S3003 and on all KO servos you will need to trim a off the sides of the servo ears. We have not tested any servos that were released after mid-1999.

## step 3

## NSTALL YOUR MOTOR

 (3932*) motor cam to the optional motor with two \#3934 button head motor screws. choice. (Refer to the gearing chart on page 19.)Install the two \#4449 locknuts to the underside of the chassis. These fit tight, so be sure to put them in straight and all the way in.
(4) Slide the motor and cam down into the groove of the chassis

Motor not included in kit. Pinion gear not included in kit.


5 Screw down the \#6928 inner screw first until the \#3931 (3932*) motor clamp just touches the chassis bulkhead
6 Set your gear mesh.
7 Slide the \#3929 spring onto the \#3929 screw and thread in only until there is no free play between

the screw and spring. Now tighten the screw 2 to 3 turns. No more. It is normal to have an approximately .040"-.050" (1 to 1.2 mm ) gap remain between the clamp and the bulkhead, as shown.

About .220"-. 250" (5.5-6.5mm) when correctly tightened


## step 4

FACTORY TEAM KITS ONLY:
Push the \#3927* radial heatsink onto the motor.

## $\operatorname{sten} 5$

RADIO AND RECEIVER INSTALLATION
(1) Cut a piece of \#6727 servo tape and use it to attach your optional ESC and switch where shown.
(2) Cut a piece of \#6727 servo tape and use it to attach your optional receiver where 3 shown.

Connect the ESC and steering servo to your receiver according to your radio or ESC
(4) instructions. Then connect the motor to your ESC.

Push your receiver wire through the built-in antenna mount. Slide the wire through the \#6338 antenna and push the antenna firmly into the chassis antenna mount hole. Cap the other end of the antenna tube and wire with the black rubber cap.


5 TRANSPONDER MOUNT
If needed, remove the transponder mount and cut away all the areas
(6) shown in gray as shown in illustration.

7 Attach the mount to the servo where shown with servo tape.
FACTORY TEAM KIT ONLY: Push the \#3968* counterfeit
transponder peg up through the hole in the mount and slide a \#6332 body clip through the small hole on top of the mount.


## BATTERY INSTALLATION

(1) Install your battery pack. See which figure, at left or right, best represents your battery orientation.
(2) Thread on the two \#6916 screws. Aim the body clip hole across the chassis.
(3) Add the \#3848 foam spacer.

4 Add the \#3853 (3974*) battery hold down strap, orienting it up or down according to your battery pack design. Adjust the screws so the batteries are held tight, but you are still able to push the \#6332 body clips through the screws.


## BIG

REMOVE THESE PARTS FOR: Steps 1-2


6332, qty 8 body clip


6922, qty 2 $4-40 \times 1 / 2$ screw
7874, $7873^{*}$, qty 2
$4-40 \times 7 / 16$ screw


3852, qty 1 foam bumper

3897, qty 4 pivoting body mount

## TOOLS USED

1/16"


## $\operatorname{step} 2$

FOAM BUMPER
(1) Place the \#3852 foam bumper over the front body posts. (You will trim it later to fit your body.)
(2) Slide the \#3897 pivoting body mount over the body post so its holes line up with the fourth hole from the top. (Adjust for proper hole later when you fit your body.)
(3) Slide the \#6332 body clip into the body post and pivoting body mount. (You'll add another body clip after you install your body.)
4 Do both front posts.


## BITH

## REMOVE THESE

PARTS FOR:
Steps 1-2


6943, qty 4 8-32 locknut


3950, 3972*, qty 4 wheel hex adator


3951, qty 4
TC3 wheel


3955, qty 4 foam wheel insert


3955, qty 4
TC3 tire


## step 1

## $\operatorname{stg} 2$

## TIRE ASSSEMBLY

(1) Make a $1 / 8^{\prime \prime}$ hole in the \#3951 TC3 wheel.
(2) Insert the \#3955 foam insert into the \#3955 tire. Make sure the insert is centered in the tire.
(3) Install the \#3955 tire and insert onto the \#3951 wheel.
(4) Glue the tire to the wheel with super glue (cyanoacrylic glue \#1597 Tire Adhesive) in four equally-spaced spots around the tire on both sides. WARNING! Follow the adhesive manufacturer's instructions for proper use and safety. Wear eye and hand protection.
TIP: Place a rubber band around the tire to hold it tight to the wheel while gluing.
5 Repeat steps for the three remaining tires.


REMOVE THESE PARTS FOR: Steps 1-4

$8828^{*}$, qty $48828^{*}$, qty 4 open cup closed cup

## $\square$

8828*, qty 4 $5 / 16$ " set screw

$3960^{*}$, qty 2 anti-roll bar


8830*, qty 4 pivot

## 0

6951*, qty 4 set screw


9146*, qty 4
screw

## WHEN ARE ANTI-ROLL BARS NEEDED?

If you are driving on a high traction surface and your car wants to oversteer, then use the bar on the front only. This will decrease the front chassis roll and decrease steering through the corner. This has the feeling of increasing rear traction.

If your car is understeering, then try the anti-roll bar kit on the rear only. The rear anti-roll bar will decrease rear traction. This has the feeling of increasing steering.

## step 1

ROLL BAR LINKS
(1) Thread one \#8828 open cup and one closed cup onto each $5 / 16$ " set screw to the dimension shown at right.
 open cup 8828 $5 / 16$ " set screw 8828 closed cup


## step 2

## ADD PIVOTS

(1) Place the aluminum \#8830 anti-roll bar pivots over the ends of the anti-roll bar according to the dimension shown, and tighten down with the \#6951 set screw.



Front


Rear

## step 4

(1) Attach the open cup side of the linkages to the antiroll bar.
(2) Make sure your car is ready to run without the body installed.
(3) Drop your car from about 2" high onto a flat surface.
(4) Without moving the suspension, adjust the link so it aligns with the balls exactly, then snap it onto the balls with your needle nose pliers. This ensures that the anti-roll bar is not under


Front
Rear

## FNAL ADJUSTMENTS

## FINISHING THE BODY

Before you start to mask and paint the inside of your TC3's body, wash it out with soap and water to remove any mold release residue or dirt that may show up in your paint.

1. Mark the body post holes and rear wheel cutout

## Make these adjustments before racing

with a marker on the outside of the body.
2. Each body comes with pre-cut self-adhesive window masks for your convenience.
3. Be sure to use a paint that is specifically formulated to adhere to Lexan. Spray several thin coats (instead of one thick coat) to avoid runs. If possible,
spray your darker colors first
4. After painting, trim the wheel wells with curved scissors or a sharp hobby knife.
5. Trim out the rear wing and mount it to the body with the supplied $4-40$ button head screws and nylon nuts. 6. Finish by applying decals.


## RADIO ADJUSTMENTS

Use the following steps to make the final adjustments on your car.

1. Turn the transmitter on.
2. Make sure the motor is disconnected.
3. Connect your battery pack.
4. Turn the power switch on.
5. Move the steering control on the transmitter to the right and left. Do the wheels move in the correct direction? If not, you must reverse the steering servo direction on your transmitter (see radio manual.)
6. Look at the servo horn mounted on the servo. It should lean toward the centerline of the chassis about 1/8" (3mm).

7. Adjust the servo turnbuckle so that the steering rack arm is EXACTLY in the center of the car.
8. Using the two steering turnbuckles, adjust the front wheels so they are pointed straight ahead.
9. Adjust the ESC (electronic speed control) according to the speed control manufacturer's instructions. Note: Some manufacturers have the motor connected during adjustment and some do not. Now turn the power switch off.
10. Connect the motor. Place your car on a block or car stand so that all four wheels cannot touch anything. Turn the power switch on again. Check the ESC and steering settings you have made and then turn the power switch back off.
11. Remember this! The transmitter is always the FIRST TO BE TURNED ON and THE LAST TURNED OFF.

CONGRATULATIONS! YOUR CAR IS NOW READY TO RUN!


## MOTOR GEARING

To get the most from your motor, proper gearing is important. The gear ratios listed in the chart are recommended starting gear ratios. Ratios can vary from track to track, but you should not change the pinion size more than one tooth from the recommended ratio.

CAUTION! Increasing the pinion size by more than one tooth can damage your motor from excess heat.

## MAINTENANGE

## CHECK FOR FIT

You should periodically check all the moving parts: front and rear end, suspension arms, steering blocks, steering linkage, shocks, and so on. If any of these should get dirty or bind then your car's performance will suffer.

## MOTOR MAINTENANCE

Between runs, inspect the brushes to ensure they are moving freely in the brush holder. This is done by
carefully removing the spring and sliding the brush in and out of the holder. If there is any resistance or rough spots, remove the brush and carefully wipe the brush clean. This will clean off any buildup and lubricate the brush so it slides smoothly in the brush holder.

After every 3 to 5 runs, remove the brushes from the holders and inspect the tips for wear and/or burning. If there is a noticeable amount of wear, replace the brush with a new pair. If the tip is a burnt blue color, then the lubricant in the brush has been burned away and new brushes should be installed.

After every other battery charge you should carefully clean the motor. One recommended method is to spray motor cleaner directly on the brush and commutator area. Run the motor for approximately 15 seconds. Disconnect the motor and spray it again, making sure the runoff is clear and clean. If the runoff is still dirty, repeat the spraying action until clean. After completing the cleaning, apply a small amount of lightweight oil to each bushing or bearing for lubrication. Be careful not to apply too much oil, for this will pick up dirt and contaminate the commutator and brushes.

## DIFFERENTIAL MAINTENANCE

You should rebuild the differentials when the action gets somewhat "gritty" feeling. Usually cleaning the diff parts and applying new lube per the instructions will bring it back to new condition again. The standard $3 / 32$ " carbide balls rarely need replacing. Normally, as the parts seat, the diff will get smoother

If the diff still feels gritty after carefully cleaning and re-lubing the diff parts, the thrust balls, thrust washers, and drive rings should be checked and possibly replaced

## TUWIVG a SIUP TIPS

Your car is one of the most tunable on road cars on the market. This section will try to explain the parts and adjustments you can use to tune your car for different track conditions.

CASTER describes the angle of the kingpin from vertical when looked at from the side of the car. Positive caster means the kingpin leans rearward at the top. Negative caster should never be used.

The parts will normally wear out in the following order:

1. \#6575 5/64" diff thrust balls (qty 6 ).
2. \#6573 diff thrust washers (2).
3. \#3906 D-drive rings (2)

Refer to the differential section to correctly assemble the diff.

These tips prepare your car for maximum performance


Associated makes block carriers for the TC3 with $0^{\circ}$ (kit standard), $2^{\circ}$, and $4^{\circ}$ of caster. Increasing caster in the TC3 (with $2^{\circ}$ or $4^{\circ}$ block carriers) will give your car more steering entering corners but less steering exiting corners. It will also be more stable in bumpy conditions.

Note: When figuring total caster in your car, add the amount in the block carrier to the amount of kickup. Example: $2^{\circ}$ of kickup (kit standard) and $0^{\circ}$ block carrier equals total of $2^{\circ}$ of caster.

KICKUP refers to the angle at which the front suspension is mounted in relation to horizontal when looked from the side of the car. Kickup is adjusted by changing the suspension arm mounts, which have molded codes to help you tell them apart. The two front arm mount combinations are as follows:

## RECOMMENDED ARM MOUNT/BLOCK CARRIER COMBINATIONS

RECOMMENDED ARM MOUNT/BLOCK CARRIER COMBINATIONS

FOR THIS SETUP:			
	Arm Mounts		
	$\mathbf{A}$	$\mathbf{B}$	Block Carrier
$2^{\circ}$ kickup, $2^{\circ}$ caster	F	$\mathrm{F}+2$	$\mathbf{C}$
$2^{\circ}$ kickup, $4^{\circ}$ caster	F	$\mathrm{F}+2$	$0^{\circ}$
$0^{\circ}$ kickup, $0^{\circ}$ caster	F	$\mathrm{F}-0$	$2^{\circ}$
$0^{\circ}$ kickup, $2^{\circ}$ caster	F	$\mathrm{F}-0$	$0^{\circ}$
$0^{\circ}$ kickup, $4^{\circ}$ caster	F	$\mathrm{F}-0$	$2^{\circ}$

EFFECTS OF ARM MOUNT/BLOCK CARRIER COMBINATIONS

The kit setting of $\mathbf{2}^{\circ}$ kickup will work best in most conditions, especially in bumpy conditions


© B ARM MOUNT PART NUMBERS		
code	effect	part \#
F		$\# 3863(\mathrm{std})$
F+2	$+2^{\circ}$ kickup	$\# 3863(\mathrm{std})$
F-0	$0^{\circ}$ kickup	$\# 3864$ (optional)


© BLOCK CARRIER PART NUMBERS

effect	part \#
$0^{\circ}$ caster	\#3868 (std)
$2^{\circ}$ caster	$\# 3870$ (optional)
$4^{\circ}$ caster	$\# 3872$ (optional)



## FRONT TOE-IN AND TOE-OUT is

adjusted by turning the steering turnbuckles. Toe-in will make your car easier to drive by improving stability during acceleration. Toe-out will increase steering when entering corners but will be slightly more difficult to drive. We suggest using $0^{\circ}$ to $1^{\circ}$ toe-out on the TC3.


Toe-in:
Easier to drive.
Improves stability during acceleration.


Toe-out:
Harder to drive. Increases steering entering corners.

REAR ANTI-SQUAT describes the angle at which the rear suspension is mounted in relation to horizontal when looked at from the side of the car. The TC3 comes standard with $2^{\circ}$ of rear anti-squat. This provides good rear traction. Installing the \#3864 $(R 3+0)$ rear arm mount reduces anti-squat to $0^{\circ}$ and will reduce rear traction. However, it will improve acceleration in bumpy conditions and increase steering slightly.


REARTOE-IN is adjusted by changing the rear arm mounts. The TC3 comes standard with $3^{\circ}$ of toein on each side. This setting should work best in any condition. However, if less toe-in is desired, install the \#3864 ( $\mathrm{R}+2+2$ ) or \#3864 ( $\mathrm{R}+2+0$ ) rear arm mounts. These mounts have $2^{\circ}$ of toe-in and will decrease rear traction and add steering. (See rear antisquat details above for more info on the mounts.)

## WHEELBASE ADJUSTMENT can be

made to the TC3 by moving the two \#4187 1/32" plastic spacers on the outer rear hinge pins (next to the hub carrier).

Moving the spacers to the front of the hub carrier will lengthen the wheelbase and decrease rear traction.

Moving the spacers to the rear of the hub carrier will shorten the wheelbase and increase rear traction.


Spacers to rear shorten your wheelbase.


Spacers to front lengthen your wheelbase.

## RIDE HEIGHT describes the height of the

 chassis in relation to the surface it is sitting on. This adjustment must be made with the chassis ready-torun but with no body. The \#8846 shock preload spacers are used for raising and lowering the ride height.We suggest starting with about $1 / 4^{\prime \prime}$ ( 6.0 mm ) clearance between the chassis and ground. Try using a slightly lower right height for high traction conditions such as carpet racing. Do not use a ride height lower than $5 / 32^{\prime \prime}(4 \mathrm{~mm})$.
For more tips on setting ride height, see next page.


Adjust preload spacers to change your ride height.


CAMBER LINK LOCATIONS on the
TC3 have been thoroughly tested to find the best all around positions. We suggest using the standard setting for all conditions. However, if you must make adjustments, the following guidelines should help you: The longer or higher the link, the more traction and less stability. The shorter or lower the link, the less traction and greater stability.


Camber link possibilities for the rear tower and hub carrier. Standard setup shown.


Camber link possibilities for the front tower. Standard setup shown.

ACKERMAN is a term describing the effect of the inside front wheel turning tighter than the outside front wheel. The standard setup works best in most conditions and is preferred by most of our Team drivers.

By adding two .100 " ( 2.5 mm ) spacers and the longer \#3858 ball ends to the steering rack, a more aggressive steering feeling can be achieved. This is because there will be less ackerman.

Standard ackerman. For a neutral steering feeling.


Optional ackerman.
For a more aggressive steering feeling. end used


CAMBER describes the angle the wheels ride relative to the ground when looked at from the front or back. Negative camber means that the tire leans inward at the top. Positive camber means just the opposite, and should not be used.


We suggest using $2^{\circ}$ of negative camber to start with. For tips on setting camber, see next page.

## SETTING CAMBER

Setting camber is one of the tuning options that the TC3 offers. To set the camber we recommend using a camber gauge, $3 \times 5$ " card or just a square piece of cardboard. When adjusting camber you need to have the car ready to run with no body.

1. Set the car on a flat surface.
2. Take your $3 \times 5$ card and push it against the tire as shown in fig. 1.
3. Use your supplied molded turnbuckle wrench to adjust the camber link to $1^{\circ}, 2^{\circ}$ or $3^{\circ}$ by either eyeball the gap between the card and the top of the tire (fig. 2), or place a ruler across the top of the tires and measure from the card to the tire.
(If you really want to know exact figures,
$1^{\circ}$ produces a $.045 "(1.1 \mathrm{~mm})$ gap,
$2^{\circ}$ produces a $.088^{\prime \prime}(2.2 \mathrm{~mm})$ gap, and
$3^{\circ}$ produces a $.130^{\prime \prime}(3.3 \mathrm{~mm})$ gap.
But it's hard to measure!)
We recommend using $2^{\circ}$ of negative camber. On high traction tracks $2^{\circ}$ to $3^{\circ}$ negative camber would be used, $1^{\circ}$ to $2^{\circ}$ would be used in low traction conditions. We don't recommend using positive camber under any circumstances.


Fig. 1
Push a $3 \times 5$ card against the tire. Arrow is pointing to the negative camber gap at the top.


Fig. 2
Eyeball or measure the gap for camber. We recommend $2^{\circ}$ negative camber to start with.

## SETTING RIDE HEIGHT

Setting the ride height is another adjustment of the TC3. The ride height is easily adjusted by the \#8846 shock preload spacers, shown in fig. 1, used for the non-threaded shocks. The suggested preload for the TC3 is one $1 / 8$ " preload for the front shocks and one $1 / 8^{\prime \prime}$ and one $1 / 16^{\prime \prime}$ spacers for the rear shocks. (See page 17, step 6 for more about the preload spacers.) These preload spacers set the ride height at $1 / 4 "(6.0 \mathrm{~mm})$.


Fig. 3
Measure your ride height quickly and easily with Associated's Ride Height Gauge \#1450 (not included in kits).

The Factory Team Kit shocks are adjusted by the collar on the bodies, shown in fig. 2A. The spacing between the collars on the threaded shocks is $7 / 64$ " $(2.78 \mathrm{~mm})$ for the front shocks (fig. 2B). The spacing for the rear shocks is $9 / 64$ " ( 3.58 mm ) (fig. 2C). This also sets the ride height at $1 / 4$ " $(6.0 \mathrm{~mm})$.

For adjusting the ride height we recommend using Associated ride height gauge \#1450 (fig. 3). The ride height gauge is stepped every $1 / 2 \mathrm{~mm}$ and every every 1 mm step is numbered.

1. When adjusting the ride height you need to have
the car ready to run with no body.
2. Set the car on a flat surface.
3. Slide the ride height gauge underneath the chassis, as shown in fig. 4A, until the gauge just touches the chassis. To get a measurement on the chassis and not the bumper, you might need to slide the gauge in the corner of the car as shown in fig. 4A. Check both corners of the front.
4. Slide the gauge underneath the back of the car. Check both corners of the rear (fig. 4B).


Fig. 2A
Adjusting collar on threaded shock.


Fig. 2B, front
Front shock spacing: 7/64" (2.78mm)


Fig. 2C, rear
Rear shock
spacing: 9/64" (3.58mm)


Fig. 4B, rear
Slide your Ride Height Gauge under the chassis so you don't measure the bumper.

SHOCK TRAVEL can be adjusted on the TC3 to help speed up or slow down how fast the car changes direction when cornering. The TC3 standard setup is setting 6 on your droop gauge in the front and 4 on the rear. This setup will work best in almost any condition.

If your track is bumpy, you may want to add droop to your car by going to a lower droop gauge step.

If your track has very high traction, such as occurs with carpet, then you may want to take droop out of your car by going higher on the droop gauge. Too little droop will cause a loss of traction.
higher traction
less droop
$\leftarrow$

more bumps
more droop
$\xrightarrow{ }$

SHOCK SPRINGS try to keep your car level during acceleration, deceleration, and cornering.

Stiffer springs will help your suspension respond more quickly, but because of their stiffness will not absorb bumps as well. Use stiffer springs in high traction conditions such as carpet racing.

Softer springs are best for slippery or bumpy conditions.
\#3941
\#3942
\#3943
\#3944
\#3945
\#3946
\#3952
\#3953
\#3954

Green	$12 \mathrm{lbs} / \mathrm{in}$
Silver	$14.5 \mathrm{lbs} / \mathrm{in}$ (std rear)
Blue	$17 \mathrm{lbs} / \mathrm{in}$
Gold	$19.5 \mathrm{lbs} / \mathrm{in}$ (std front)
Red	$22 \mathrm{lbs} / \mathrm{in}$
Copper	$25 \mathrm{lbs} / \mathrm{in}$
Purple	$30 \mathrm{lbs} / \mathrm{in}$
Yellow	$35 \mathrm{lbs} / \mathrm{in}$
White	$40 \mathrm{lbs} / \mathrm{in}$

ANTI-ROLL BARS are used to stabilize a car from excessive chassis roll (which occurs when your car leans through the turns by centrifugal force). Anti-roll bars are generally used on smooth, high traction track conditions. If the conditions are very bumpy, then anti-roll bars are probably not necessary.

If you are driving on a high traction surface and your car wants to oversteer, then use the optional \#3960 anti-roll bar kit on the front only. This will decrease the front chassis roll and decrease steering throughout the corner. This has the feeling of increasing rear traction.

TIRES \& INSERTS are two of the most influential changes you can make to your car. The TC3 comes standard with Pro-Line S-2 compound V-Rage tires. This is a good traction, long-wearing tire for all around use.

If you would like more traction, try the Pro-Line \#1091 S-3 compound tires with Pro-Line tire inserts. For racing conditions, try the Pro-Line \#1089S2 S-2 slicks or \#1089S3 S-3 racing slicks. These optional tires are available from Pro-Line.

SETUP SHEET for the TC3 is included. Set up your TC3 with the standard settings at right, then deviate from them in response to your track conditions and driving style, as noted below.

Tips for beginners:
For best results, make only one setup change at a time, testing it before making another change. Make a copy of the setup sheet included in this manual to help keep track of your changes.

Before you make any changes to the standard settings, make sure you can get around the track without crashing. None of your setup changes will work if you cannot stay on the track.

Your goal is consistent lap times. Inconsistent lap times may indicate poor control. When you have consistent lap times, then make changes to your car.

If the change results in a faster lap, then mark the change in your setup sheet. If performance is worse, then revert back to the previous setup and try another change.

Fill out your setup sheet thoroughly when you are satisfied with it and file it away. It can be a practical guide for future track layouts and conditions you encounter.


Batteries separated:
Slightly more steering than full rear. 26 Slightly less rear traction than full front. Easy to drive.

If your car is understeering, then try the optional \#3960 anti-roll bar kit on the rear only. The rear antiroll bar will decrease rear chassis roll and decrease rear traction (this has the feeling of increasing steering).


Antiroll bar (sway bar) kit \#3960.

## STANDARD SETTINGS of the TC3 are

presented below.

1. Front camber: $-2^{\circ}$.
2. Front camber link: inside lower hole on tower.
3. Front block carrier: $0^{\circ}$.
4. Front toe: $0^{\circ}$ to $1^{\circ}$ toe-out.
5. Front ride height: $1 / 4^{\prime \prime}(6.3 \mathrm{~mm})$.
6. Kickup: $+2^{\circ}$.
7. Bump steer spacers: none.
8. Ackerman: \#3858 ball ends, no spacers.
9. Front anti-roll bar: none.
10. Rear camber: $1^{\circ}$ to $2^{\circ}$ negative.
11. Rear camber link: tower: inside lower hole. Hub carrier: outside hole.
12. Rear toe-in: $3^{\circ}$.
13. Rear ride height: $1 / 4$ " ( 6.3 mm ).
14. Rear Anti-squat: $2^{\circ}$.
15. Rear anti-roll bar: none.
16. Driveshafts: MIP CVD's.
17. Wheelbase: hub carriers centered.
18. Shock body: macro shock.
19. Shock oil: front, 40wt. Rear, 40wt.
20. Shock shaft: front, \#8844. Rear, \#8844.
21. Shock pistons: front, \#2. Rear, \#2.
22. Shock springs: front, Gold. Rear, Silver.
23. Shock limiters: front, 4. Rear, 2.
24. Shock mounting, front tower, outside hole.
25. Shock mounting, rear tower, outside hole.
26. Batteries: 6-cell.
27. Battery placement: rear.
28. Motor: varies.
29. Speed control: varies.
30. Radio: varies.
31. One way, front diff: none.
32. Tires, front: Pro-Line V-Rage S-2 compound.
33. Tires, rear: Pro-Line V-Rage S-2 compound.
34. Tire additive: none.
35. Inserts: incl. with tires.
36. Wheels: Pro-Line.

37 Spur gear: 72 (from Kimbrough)
38. Pinion gear: varies.
39. Lead weights: none.
40. Chassis: Composite.
41. Body: varies.
42. Wing: varies with body.

## BUMPY TRACK SETTING

## Front Suspension:

1. Block carriers: $0^{\circ}$
2. Kickup: $2^{\circ}$
3. Toe-in: $0^{\circ}$
4. Toe-out: $0^{\circ}$
5. Camber: $-1.5^{\circ}$
6. Ride height: 6 mm
7. Anti-roll bar: none
8. Ackerman setting: std
9. Shock bodies: VCS
10. Shock piston: \#2
11. Shock oil: 30wt
12. Spring: silver
13. Droop setting: 5
14. Camber link postion: std
15. Shock mounting: middle hole

Rear Suspension:

1. Toe-in: $2^{\circ}$
2. Anti-squat: $2^{\circ}$
3. Camber: $-1.5^{\circ}$
4. Wheelbase: middle
5. Ride height: 6 mm
6. Anti-roll bar: none
7. Shock bodies: VCS
8. Shock piston: \#2
9. Shock oil: 25 wt
10. Spring: green
11. Droop setting: 3
12. Camber link postion

Tower: std
Hub: std
13. Shock mounting: middle hole

## General:

1. Battery postion: rear
2. One-way or Diff: diff
3. Drive shafts: alum CVD's
4. Body: varies
5. Spur: 72

## CARPET WITH FOAM TIRES

## Front Suspension:

1. Block carriers: $4^{\circ}$
2. Kickup: $2^{\circ}$
3. Toe-in: $0^{\circ}$
4. Toe-out: $0^{\circ}$
5. Camber: $-1.5^{\circ}$
6. Ride height: 4 mm
7. Anti-roll bar: std
8. Ackerman setting: std
9. Shock bodies: VCS
10. Shock piston: \#2
11. Shock oil: 70wt
12. Spring: white
13. Droop setting: 6
14. Camber link postion: std
15. Shock mounting: middle hole
16. Tires: Jaco orange purple

## Rear Suspension:

1. Toe-in: $3^{\circ}$
2. Anti-squat: ${ }^{\circ}$
3. Camber: $-2^{\circ}$
4. Wheelbase: middle
5. Ride height: 4 mm
6. Anti-roll bar: std
7. Shock bodies: VCS
8. Shock piston: \#2
9. Shock oil: 50 wt
10. Spring: red
11. Droop setting: 4
12. Camber link postion:

Tower: upper inner hoe
Hub: std
13. Shock mounting- middle hole
14. Tires: Jaco purple

## General:

1. Battery postion: rear
2. One-way or Diff: diff
3. Drive shafts: alum CVD's
4. Body: varies
5. Spur: 72

## ONE-WAY FRONT DIFF (Worlds 2000)

Front Suspension:

1. Block carriers: $4^{\circ}$
2. Kickup: $2^{\circ}$
3. Toe-in: $0^{\circ}$
4. Toe-out: $0^{\circ}$
5. Camber: $-2^{\circ}$
6. Ride height: 4.5 mm
7. Anti-roll bar: std
8. Ackerman setting: std
9. Shock bodies: VCS
10. Shock piston: \#2
11. Shock oil: 40 wt
12. Spring: gold
13. Droop setting: 5.5
14. Camber link postion: upper inner hole
15. Shock mounting: inner hole

## Rear Suspension:

1. Toe-in: $3^{\circ}$
2. Anti-squat: $0^{\circ}$
3. Camber: $-2^{\circ}$
4. Wheelbase: middle
5. Ride height: 4.5 mm
6. Anti-roll bar: std
7. Shock bodies: VCS
8. Shock piston: \#2
9. Shock oil: 30wt
10. Spring: silver
11. Droop setting: 4
12. Camber link postion:

Tower: upper inner hole
Hub: std
13. Shock mounting: inner hole

## General:

1. Battery postion: rear
2. One-way or Diff: one-way
3. Drive shafts: alum CVD's
4. Body: varies
$\qquad$
Track/City:
Event:
Date:


## REAR SUSPENSION

ANTI-SQUAT $\square 0^{\circ} \quad \square 2^{\circ}$ ANTI-ROLL BAR: $\square$ Non $\square$ Size:


TOE-IN $\square 3^{\circ} \square$ Other: $\qquad$ CAMBER: $\qquad$
$\qquad$

## wheelbase

 ADJUSTMENT

## REAR SHOCKS

BODY $\square$ Comp. $\square$ Alum.
SHAFT $\square$ Std $\square$ other:

LIMITERS:
Inside:
Outside:
$\qquad$
DROOP GAUGE \# $\qquad$
PISTON \#
OIL
SPRING
$\qquad$
$\qquad$

SHOCK MOUNT \& CAMBER LINK Fil in holes used


## OTHER

FRONT TIRES $\qquad$ Compound: $\qquad$ Insert: $\qquad$ Wheel: $\qquad$
REAR TIRES: $\qquad$ Compound: $\qquad$ Insert: $\qquad$ Wheel: $\qquad$
BATTERY PLACEMENTBackFront $\square$ Other: $\qquad$ BATTERY TYPE: $\qquad$
CHASSIS $\square$ Std $\square$ Carbon Fiber
FRONT/REAR DRIVE $\square$ Std One-way SPUR/PINION $\qquad$ T/ $\qquad$
MOTOR $\qquad$ BRUSH $\qquad$ SPRING $\qquad$
RADIO $\qquad$ SERVO $\qquad$ ESC

BODY $\qquad$ WING

TIRE ADDITIVE $\qquad$ LEAD WEIGHTS $\qquad$ (oz / gm) Location:
$\square$ None $\square$ None


## TRACK CONDITIONS

SURFACE: $\square$ Smooth $\square$ Bumpy
TRACTION: $\square$ Low $\square$ Med. $\square$ High
COMPOSITION:
$\square$ Concrete $\square$ Asphalt $\square$ Carpet $\square$ Other:
NOTES: $\qquad$

## RACE COMMENTS

MAIN $\qquad$ FINISH $\qquad$ QUALIFYING. POS.

NOTES: $\qquad$

## CAR COMMENTS

